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Quadratic non-linear oscillators (QNO) provide useful models for both the testing of
perturbation procedures [1,2] and the analysis of various phenomena in the physical and
engineering sciences [1,2]. In general, these differential equations are special cases of the second
order equation

.x þ x þ ax2 þ bx ’x þ gð ’xÞ2 ¼ 0; ð1Þ

where ða;b; gÞ are parameters. In particular, this note is concerned with the three equations:

.x þ x þ ex2 ¼ 0; ð2Þ

.x þ x þ ex ’x ¼ 0; ð3Þ

.x þ x þ e ’x2 ¼ 0: ð4Þ

In these expressions, the relevant parameter has been set equal to zero and, without loss of
generality, it is assumed that e is positive. The main goal of the work to be presented below is to
compare the solution behaviors of these three QNO differential equations. While Eqs. (2) and (3)
have been previously studied, respectively, in Refs. [3,4], the behavior of the solutions to Eq. (4)
have not been studied in detail.

To begin, consider Eq. (2) which corresponds to a non-linear conservative system. Its system
equations are

dx

dt
¼ y;

dy

dt
¼ �xð1 þ exÞ: ð5Þ

Examination of Eq. (5) shows that it has two fixed points or equilibrium solutions [2,5] located at

ð %xð1Þ; %yð1ÞÞ ¼ ð0; 0Þ; ð %xð2Þ; %yð2ÞÞ ¼ �
1

e
; 0

� �
: ð6Þ
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The trajectories, yðxÞ; in the two-dimensional ðx; yÞ phase space are determined by the following
first order differential equation:

dy

dx
¼ �

xð1 þ exÞ
y

: ð7Þ

Since Eq. (7) is separable, it can be integrated to give the energy function or first integral,

y2

2
þ

x2

2
þ

ex3

3
¼ E: ð8Þ

Using standard procedures from the qualitative theory of differential equations [2;5;6, Appendix I],
the following conclusions can be reached:

(1) For initial values ðx0; y0Þ satisfying the conditions

�
1

e

� �
ox0oxn; ð9Þ

0p
y2

0

2
þ

x2
0

2
þ

ex3
0

3
o

1

6e2
; ð10Þ

where xn is the real and positive root of

z3 þ
3

2e

� �
z2 �

1

2e3

� �
¼ 0; ð11Þ

the corresponding solutions to Eq. (2) are bounded and periodic.
(2) All other values for the initial conditions give rise to unbounded solutions. In particular, if

y0 > 0 and x0o0; then the trajectory in phase space comes in toward the origin and eventually
turns around and goes out to regions of the phase space where both x and y can monotonically
take on arbitrarily large negative values. In summary, Eq. (2) has oscillatory solutions only for
initial conditions that have sufficiently small values in a neighborhood of the fixed point ð %x; %yÞ ¼
ð0; 0Þ:

The second case, Eq. (3), can be rewritten as

.x þ ð1 þ e ’xÞx ¼ 0; ð12Þ

and corresponds to what has been called a ‘‘generalized harmonic oscillator’’ [4]. From the system
equations

dx

dt
¼ y;

dy

dt
¼ �ð1 þ eyÞx; ð13Þ

it follows that there is only one fixed point or equilibrium state located at ð %x; %yÞ ¼ ð0; 0Þ: The
trajectories in phase space are solutions of the first order differential equation

dy

dx
¼ �

ð1 þ eyÞx
y

: ð14Þ

Note that since Eq. (14) is separable and, consequently, easily integrated, the following first-
integral exists for Eq. (12):

y

e
�

1

e2

� �
lnð1 þ eyÞ þ

x2

2
¼ E: ð15Þ
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Note that for x and y ‘‘small,’’ this latter equation reduces to

y2

2
þ

x2

2
¼ E þ Oðy3Þ; ð16Þ

which, to terms of Oðy3Þ; is the energy function for the linear harmonic oscillator [2]. It has been
shown, see Mickens [4], using phase space techniques, that the following results hold for the
solutions of Eq. (12):

(1) All trajectories that begin in the half-plane region of phase space such that y > �ð1=eÞ are
periodic.

(2) All trajectories in the half-plane region yo� ð1=eÞ are non-periodic and correspond to
unbounded motions.

(3) The boundary between the behaviors given in (1) and (2) is an exact solution to the
differential equation and is given by the expression

y ¼ �
1

e

� �
or xðtÞ ¼ �

t

e

� �
þ x0: ð17Þ

This corresponds to uniform motion to the left in phase space with constant velocity.
The third case, Eq. (4), is the quadratic velocity non-linear oscillator equation. It is known that

for sufficiently small initial values ðx0; y0Þ; this equation has periodic solutions. In fact, for jej51;
application of the perturbation method gives [2]

xðy; eÞ ¼A cos yþ e
A2

6

� �
ð�3 þ 4 cos y� cos 2yÞ

þ e2 A3

3

� �
�2 þ

61

24

� �
cos y�

2

3

� �
cos 2yþ

1

8

� �
cos 3y

� �

þ Oðe3Þ;

where

y ¼ ot; oðeÞ ¼ 1 � e2 A2

6

� �
þ Oðe3Þ: ð18Þ

The system equations for Eq. (4) are

dx

dt
¼ y;

dy

dt
¼ �x � ey2; ð19Þ

and, consequently,

dy

dx
¼ �

x þ ey2

y

� �
: ð20Þ

Only one fixed point or equilibrium solution exists and it is located at ð %x; %yÞ ¼ ð0; 0Þ: Also, observe
that Eq. (20) is invariant under the transformation

x-x; y-� y; ð21Þ

which corresponds to reflection through the x-axis. In other words for any given trajectory, its
mirror image, on reflection through the x-axis, is also a trajectory of Eq. (20). However, a more
significant feature of this equation is that it can be exactly solved. This means that Eq. (4) has a
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known first integral. It can be calculated by using the change of variables

u ¼ y2; ð22Þ

which converts Eq. (20) to the form

du

dx
þ 2eu ¼ �2x: ð23Þ

The general solution to Eq. (23) is

uðxÞ ¼ Ae�2ex þ
1

2e2

� �
�

1

e

� �
x; ð24Þ

where A is an arbitrary integration constant. In terms of y; this equation is

2e2y2 ¼ 2e2Ae�2ex þ 1 � 2ex: ð25Þ

A further simplification occurs if new variables ðx0; y0Þ are used. Making these substitutions into
Eq. (25), defining

C ¼ 2e2A; ð26Þ

and then dropping the primes, gives

y2 ¼ Ce�x þ 1 � x: ð27Þ

It will now be demonstrated that closed curves, for Eq. (27), only exist for values of C such that

�1oCo0: ð28Þ

First, consider the case where C ¼ 0: Thus, Eq. (27) becomes

y2 ¼ 1 � x: ð29Þ

Examination of this equation shows that it is a parabola, symmetric with respect to the x-axis,
having it maximum x value equal to xm ¼ 1: Therefore, its vertex is located in the ðx; yÞ phase-
plane at ð1; 0Þ: It is clear that Eq. (29) corresponds to an unbounded trajectory that comes in from
the second quadrant in the ðx; yÞ plane, passes through ð1; 0Þ and then eventually becomes
unbounded in the fourth quadrant.

Second, it is easy to see that trajectories corresponding to C > 0 are also unbounded. This
follows from the fact that from Eq. (27),

½ yðx;C ¼ 0Þ	2 > ½ yðx;C > 0Þ	2; ð30Þ

where yðx;CÞ denotes the value of y in Eq. (27) for a given (non-negative) value of C: Thus, the
trajectory yðx;C > 0Þ lies entirely outside of and to the right of the trajectory for yðx;C ¼ 0Þ: Since
yðx;C ¼ 0Þ is bounded, then yðx;C ¼ 0Þ is also unbounded.

Now, let Co0 which can be written as C ¼ �jCj: For this situation, Eq. (27) becomes

y2 þ jCje�x ¼ 1 � x: ð31Þ

It is sufficient to only consider the initial conditions

x0o1; y0 ¼ 0: ð32Þ
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The existence of periodic solutions follows from an analysis of the equation

jCje�x0 ¼ 1 � x0: ð33Þ

A periodic solution occurs for values of C such that Eq. (33) has two real solutions, say x
ð1Þ
0 and

x
ð2Þ
0 ; for which one is positive and the other is negative. Since ð %x; %yÞ ¼ ð0; 0Þ is the only fixed point,

any periodic trajectory must have this property, i.e., the trajectory crosses the x-axis at the two
points ðxð1Þ

0 ; 0Þ and ðxð2Þ
0 ; 0Þ; where

x
ð1Þ
0 o0ox

ð2Þ
0 : ð34Þ

A way of resolving this issue is to ask do the two curves

y1ðx0Þ ¼ jCje�x0 ; y2ðx0Þ ¼ 1 � x0 ð35Þ

cross and how many times do they do this? A simple graphical analysis, i.e., sketching y1ðx0Þ and
y2ðx0Þ versus x0; with jCj varying, gives the following results:

(1) If jCj > 1; then y1ðx0Þ and y2ðx0Þ do not intersect; therefore, no periodic solutions are
possible.

(2) For jCj ¼ 1; y1ðx0Þ and y2ðx0Þ are tangent at x0 ¼ 0: Since y0 ¼ 0; it follows that this case
corresponds to the fixed point ðx0; y0Þ ¼ ð %x; %yÞ ¼ ð0; 0Þ:

(3) Lastly, for 0ojCjo1; the two curves intersect in two points; one is at a negative value of x0;
while the other is for a positive x0: These two values can be identified with x

ð1Þ
0 and x

ð2Þ
0 in Eq. (24).

The conclusion is that Eq. (27) has solutions which are closed curves in the ðx; yÞ space only if C
satisfies the condition

�1oCo0: ð36Þ

It should be noted that all of the above results have been obtained under the assumption that
the parameter e is possible. However, it is not difficult to demonstrate that similar conclusions are
reached for eo0:

The major conclusion is that all of the three quadratic oscillator equations (2)–(4) have certain
regions in the ðx; yÞ phase space for which periodic solutions exist. There also exist other regions,
that enclose the regions where periodic solutions occur, for which only unbounded motions take
place. The next step is to investigate the conditions under which the full equation (1) has periodic
solutions and the regions in phase space where they exist.
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